MINISTRY OF PUBLIC HEALTH OF UKRAINE NATIONAL UNIVERSITY OF PHARMACY

Educational degree

master

Training area

EXAM (EXAMPLE)

QUESTION CARD №

\qquad

1. Carry out qualitative analysis of the certain salt. Write the equations of the reactions of cation and anion detection and reactions of cation and anion with the respective group reagents; specify the conditions of their carrying out.
2. Carry out determination of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\left(M\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)=134.000 \mathrm{~g} / \mathrm{mole}\right)$ by the method of permanganatometry (the method of separate samples). Write the equation of reaction. Calculate the stoichiometrical ratio s, the factor of equivalence f for the substance to be determined and its molar mass of equivalent E. Calculate the percentage of the substance to be determined in three ways - according to the molar mass of equivalent, according to the molar mass and according to the titre of the titrant by the substances to be determined $\left(c\left(1 / 5 \mathrm{KMnO}_{4}\right)=0.1015 \mathrm{~mole}_{\mathrm{dm}}{ }^{3}, V\left(\mathrm{KMnO}_{4}\right)=25.18 \mathrm{~cm}^{3}, m\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)=0.2458 \mathrm{~g}\right)$.
3.1. Detection of glucose and maltose has been carried out by the method of thin-layer chromatography. The next distances have been passed by glucose and maltose -3.8 cm and 2.3 cm respectively. The solvent has passed the distance of 10.0 cm for the same time. Calculate the values of R_{f} for each substance to be determined.
3.2. Determination of the substance by the method of spectrophotometry. At $\lambda=410 \mathrm{~nm}$ the molar absorption coefficient is $8000 \mathrm{~L} / \mathrm{mole} \cdot \mathrm{cm}$, the specific absorption coefficient is $147.751 / \% \cdot \mathrm{~cm}$. Calculate the molar mass of the substance to be determined.
3.3. Determination of glucose in the solution by the method of polarimetry. The rotation angle of polarization plane for the solution to be analysed is $+11.80^{\circ}$, the layer thickness is 1 dm and the value of the specific rotation is $+53.1^{\circ}$. Calculate the concentration of glucose $(\mathrm{g} / 100 \mathrm{~mL})$ in the solution to be analysed.
3.4. Determination of the individual substance by the method of refractometry. Calculate the concentration of the KBr solution, if the refraction index of the solution n is equal to 1.3574 , the refraction index of the solvent n_{0} is equal to 1.3330 , the refraction index factor F is equal to 0.00117 .

POINTS DISTRIBUTION

question 1	40 points
question 2	40 points
question 3	20 points
in all	100 points

Estimation scale: national and ECTS

Points in all	ECTS mark	Mark by national scale
$90-100$	A	5
$82-89$	B	4
$74-81$	C	
$64-73$	D	3
$60-63$	E	
$0-59$	F	2

It has been approved at the meeting of the Analytical Chemistry Department.
The minutes №1 from 29. 08.2019 year.

Head of the Analytical Chemistry Department, prof.

I. S. Grytsenko
O. Ye. Mykytenko
L. Yu. Klimenko
performed by as. prof. Klimenko L. Yu., as. prof. Mykytenko O. Ye., as. prof. Kostina T. A.

1. Carry out qualitative analysis of CoCl_{2}. Write the equations of the reactions of cation and anion detection and reactions of cation and anion with the respective group reagents; specify the conditions of their carrying out.

$$
\mathrm{CoCl}_{2} \rightarrow \mathrm{Co}^{2+}+2 \mathrm{Cl}^{-}
$$

1. Action of the group reagent for Co^{2+}-cations - ammonia solution:

$$
\begin{gathered}
\mathrm{Co}^{2+}+\mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}^{-} \rightarrow \underset{\text { dark-blue }}{\mathrm{Co}(\mathrm{OH}) \mathrm{Cl} \downarrow+\mathrm{NH}_{4}^{+}} \\
\mathrm{Co}(\mathrm{OH}) \mathrm{Cl} \downarrow+6 \mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O} \rightarrow \underset{\substack{ \\
\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} \\
\text { orange } \\
\text { solution }}}{\mathrm{Cl}^{-}+\mathrm{OH}^{-}+6 \mathrm{H}_{2} \mathrm{O}}
\end{gathered}
$$

2. Identification of Co^{2+}-cations:
2.1. Action of ammonium thiocyanate solution:

$$
2 \mathrm{NH}_{4}^{+}+\mathrm{Co}^{2+}+4 \mathrm{SCN}^{-} \rightarrow \underset{\text { dark blue solution }}{\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Co}(\mathrm{SCN})_{4}\right]}
$$

3. Soda extraction:

$$
2 \mathrm{Co}^{2+}+2 \mathrm{CO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow(\mathrm{CoOH})_{2} \mathrm{CO}_{3} \downarrow+\mathrm{CO}_{2} \uparrow
$$

4. Action of the group reagent for Cl -anions - silver nitrate solution:

$$
\mathrm{Cl}-+\mathrm{Ag}^{+} \rightarrow \underset{\text { white }}{\mathrm{AgCl}} \downarrow
$$

5. Identification of Cl -anions:
5.1. Formation of AgCl caseous precipitate and its dissolution in $\mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$:

$$
\mathrm{Cl}^{-}+\mathrm{Ag}^{+} \rightarrow \underset{\text { white }}{\mathrm{AgCl}} \downarrow
$$

$$
\mathrm{AgCl} \downarrow+2 \mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}+\mathrm{Cl}+2 \mathrm{H}_{2} \mathrm{O}
$$

5.2. Action of potassium dichromate:

The reaction is carried out in a dry way. Chloride-ions interact with $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in the presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and form the volatile substance $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$:

$$
4 \mathrm{CaCl}_{2}+\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{CrO}_{2} \mathrm{Cl}_{2} \uparrow+2 \mathrm{CaSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4}+3 \mathrm{H}_{2} \mathrm{O}
$$

Gaseous $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ is identified by appearance of a red-violet colour of filter paper impregnated with diphenylcarbazide solution.
2. Carry out determination of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\left(M\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)=134.000 \mathrm{~g} /\right.$ mole $)$ by the method of permanganatometry (the method of separate samples). Write the equation of reaction. Calculate the stoichiometrical ratio s, the factor of equivalence f for the substance to be determined and its molar mass of equivalent E. Calculate the percentage of the substance to be determined in three ways - according to the molar mass of equivalent, according to the molar mass and according to the titre of the titrant by the substances to be determined $\left(c\left(1 / 5 \mathrm{KMnO}_{4}\right)=0.1015 \mathrm{~mole}^{2} / \mathrm{dm}^{3}, V\left(\mathrm{KMnO}_{4}\right)=25.18 \mathrm{~cm}^{3}, m\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)=0.2458 \mathrm{~g}\right)$.

$-2 \mathrm{e}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow 2 \mathrm{CO}_{2}$	
$+5 \mathrm{e}+\mathrm{MnO}_{4}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$	5
2	

$5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}+2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+} \rightarrow 10 \mathrm{CO}_{2}+2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}$
$s=5 / 2 ; f\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)=1 / 2 ; f\left(\mathrm{KMnO}_{4}\right)=1 / 5$;
$E\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)=M\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right) \cdot f\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)=134.000 \cdot 1 / 2=67.000 \mathrm{~g} / \mathrm{mole}$

Given:

$c\left(1 / 5 \mathrm{KMnO}_{4}\right)=0.1015$ mole $/ \mathrm{dm}^{3} \quad$ calculation of $\omega\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ according to $E\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$
$V\left(\mathrm{KMnO}_{4}\right)=25.18 \mathrm{~cm}^{3}$
$m\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)=0.2458 \mathrm{~g}$
$E\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)=67.000 \mathrm{~g} / \mathrm{mole}$
$M\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)=134.000 \mathrm{~g} / \mathrm{mole}$
$\omega\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$-?
$\omega\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)=\frac{c\left(1 / 5 \mathrm{KMnO}_{4}\right) \cdot V\left(\mathrm{KMnO}_{4}\right) \cdot E\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right) \cdot 100}{1000 \cdot m\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)}=$
$=\frac{0.1015 \cdot 25.18 \cdot 67.000 \cdot 100}{1000 \cdot 0.2458}=69.70 \%$
$c\left(\mathrm{KMnO}_{4}\right)=c\left(1 / 5 \mathrm{KMnO}_{4}\right) \cdot f\left(\mathrm{KMnO}_{4}\right)=0.1015 \cdot 1 / 5=0.02030 \mathrm{~mole} / \mathrm{dm}^{3}$
calculation of $\omega\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ according to $M\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ and s
$\omega\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)=\frac{c\left(\mathrm{KMnO}_{4}\right) \cdot V\left(\mathrm{KMnO}_{4}\right) \cdot s \cdot M\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right) \cdot 100}{1000 \cdot m\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)}=$
$=\frac{0.02030 \cdot 25.18 \cdot 5 / 2 \cdot 134.000 \cdot 100}{1000 \cdot 0.2458}=69.70 \%$
calculation of $\omega\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ according to $T\left(\mathrm{KMnO}_{4} / \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$
$T\left(\mathrm{KMnO}_{4} / \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)=\frac{c\left(1 / 5 \mathrm{KMnO}_{4}\right)_{\text {theor }} \cdot E\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)}{1000}=\frac{0.1000 \cdot 67.000}{1000}=0.006700 \mathrm{~g} / \mathrm{cm}^{3}$
$T\left(\mathrm{KMnO}_{4} / \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)=\frac{c\left(\mathrm{KMnO}_{4}\right)_{\text {theor }} \cdot S \cdot M\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)}{1000}=\frac{0.02000 \cdot 5 / 2 \cdot 134.000}{1000}=0.006700 \mathrm{~g} / \mathrm{cm}^{3}$
$K\left(\mathrm{KMnO}_{4}\right)=\frac{c\left(1 / 5 \mathrm{KMnO}_{4}\right)_{\text {pract }}}{c\left(1 / 5 \mathrm{KMnO}_{4}\right)_{\text {theor }}}=\frac{0.1015}{0.1000}=1.015$
$\omega\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)=\frac{K\left(\mathrm{KMnO}_{4}\right) \cdot V\left(\mathrm{KMnO}_{4}\right) \cdot T\left(\mathrm{KMnO}_{4} / \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right) \cdot 100}{m\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)}=$
$=\frac{1.015 \cdot 25.18 \cdot 0.006700 \cdot 100}{0.2458}=69.70 \%$
3.1. Detection of glucose and maltose has been carried out by the method of thin-layer chromatography. The next distances have been passed by glucose and maltose -3.8 cm and 2.3 cm respectively. The solvent has passed the distance of 10.0 cm for the same time. Calculate the values of R_{f} for each substance to be determined.

Given:

$S($ glucose $)=3.8 \mathrm{~cm}$ $S($ maltose $)=2.3 \mathrm{~cm}$ $S($ solvent $)=10.0 \mathrm{~cm}$	$R_{f}($ glucose $)=\frac{S(\text { glucose })}{S(\text { solvent })}=\frac{3.8}{10.0}=0.38$
$R \&($ glucose $)-?$ $R($ maltose $)-?$	$R_{f}($ maltose $)=\frac{S(\text { maltose })}{S(\text { solvent })}=\frac{2.3}{10.0}=0.23$

3.2. Determination of the substance by the method of spectrophotometry. At $\lambda=410 \mathrm{~nm}$ the molar absorption coefficient is $8000 \mathrm{~L} /$ mole $\cdot \mathrm{cm}$, the specific absorption coefficient is $147.751 \% \cdot \mathrm{~cm}$. Calculate the molar mass of the substance to be determined.
Given:
$\varepsilon=8000 \mathrm{~L} / \mathrm{mole} \cdot \mathrm{cm}$
$A_{l c m}^{1 / 6}=147.751 / \% \cdot \mathrm{~cm}$

$$
M=\frac{\varepsilon}{A_{1 c m}^{10 /}} \cdot 10=\frac{8000}{147.75} \cdot 10=541.46 \mathrm{~g} / \mathrm{mole}
$$

M - ?
3.3. Determination of glucose in the solution by the method of polarimetry. The rotation angle of polarization plane for the solution to be analysed is $+11.80^{\circ}$, the layer thickness is 1 dm and the value of the specific rotation is $+53.1^{\circ}$. Calculate the concentration of glucose $(\mathrm{g} / 100 \mathrm{~mL})$ in the solution to be analysed.
Given:
$a=+11.80^{\circ}$
$[a]_{b}^{20}=+53.1^{\circ}$

$$
C=\frac{\alpha \cdot 100}{[\alpha]_{D}^{20} \cdot 1}=\frac{11.80 \cdot 100}{53.1 \cdot 1}=22.2 \mathrm{~g} / 100 \mathrm{~mL}
$$

3.4. Determination of the individual substance by the method of refractometry. Calculate the concentration of the KBr solution, if the refraction index of the solution n is equal to 1.3574, the refraction index of the solvent n_{0} is equal to 1.3330 , the refraction index factor F is equal to 0.00117 .
Given:
$n=1.3574$
$n_{0}=1.3330$
$F(\mathrm{KBr})=0.00117$
$C(\mathrm{KBr})$ - ?

$$
C(K B r)=\frac{n-n_{0}}{F(K B r)}=\frac{1.3574-1.3330}{0.00117}=20.85 \%
$$

